Dread Engine API

API Reference - 27 October 2002

Copyright 2001 Nathan Smith, Bram Vaessen

Contents

1. HRScript details

2. Dialog/Menu Engine details

3. NPC/Character engine details

4. Tilemap engine details

5. Map Editor Manual

6. Music engine details

7. Misc bits and pieces

This stuff wasn't really design document stuff so I split it away from design.doc

This document is designed to record information how to use the stuff we have already finished so we don’t forget.

1. HRScript details:

I designed this programing langauge as a cross between C and BASIC.

Like in C each line must be terminated with a ;

Variables are set like in BASIC

a=5;

string$="Hello";

string$="You find " + str$(gold) + " gold.";

Comments are c/c++ style

// This is a test

/* Testing... Testing... 1 2 3... */

If statements and Loops are C style

if(name$=="Nathan") message("Hello Nathan!");

for(i=0;i<5;i++) {

	message(i);

}

while(quit==0) {

	// do some menu stuff

}

do {

	// jump up and down like a chicken

}

while(!sane);

There is no switch statement.

Goto works:

cheese:

goto cheese;

You can’t use break or continue or return, scripts end on the last line of the script unless they crash ;)

All Functions call real C functions from inside the game engine

exit_game();

a = create_dialog(-1,0,0,1,1);

message(str$);

strength = get_character_stat(char_name$,"Strength");

a$ = str$(302);

note func$(value) translates to

char *func(int value); // in C/C++

and func&(value) tanslates to

double func(int value);

you can’t create new functions with in a HRScript.

HRScript was meant to convert integers to floats and floats to integers automatically, but I can't remember if I finished the code to do it, so it needs to be tested some time.

Note: HRScript functions must return a value as there is no void in the script engine. To make this work void functions in C/C++ end up returning 0 to the scripts.

Here are a list of real functions that are builtin:

void exit_game();

	quits the game for you (should only be called from the menu script)

char *str(int value);

	returns a string containing the value given

int get_global(char *var_name);

	gets the value of a global variable

	returns 0 if var_name doesn't exist

int set_global(char *var_name,int value);

	sets the global variable to the value

	if set to 0 the variable is deleted

Notes about global variables:

They exist outside a single script file so all the scripts can access them.

globals also are saved with a players game.

in order that global variable are not confused and overwriten by mistake they should be named like this:

"mapname_scriptname_varname" // for variables used by single script (but needs to be saved to disk)

"mapname_varname" // for variables used by all the scripts in a map

NOTE these should also be listed in a text file with the same name as the map to help with the script writing

"VARNAME" // for variables used on more than one map

NOTE these should also be listed in a text file called "globals.txt" to help with script writing

the last thing we want is two scripts trying to use the same global variable for different things.

for example:

"tridushouse_chest1_opened" // is the chest opened?

"cave3_switch1" // has switch1 been pulled?

"DATE" // how manys days has it been from the start of the game?

How to create a HRS function:

All variables in the script are accessed in c/c++ through the hrs_variable struct.

Here are some functions to use:

hrs_variable *make_int(int val); // create and return a hrs_variable with value of val

hrs_variable *make_float(double val);

hrs_variable *make_string(char *string);

int get_int(hrs_variable *var) // return the value of a hrs_variable

double get_float(hrs_variable *var);

char *get_string(hrs_variable *var);

void add_hrs_func(char *script_function_name,void *real_function_name,int number_of_variables_passed_to_function);

Examples:

Here is a basic function:

void quit_game()

{

 continue_game=false;

}

Now here is the HRS version of it:

hrs_variable *quit_game2()

{

 continue_game=false;

 return make_int(0);

}

or you just can write a wraper:

hrs_variable *quit_game2()

{

 quit_game();

 return make_int(0);

}

Then before you run a script file you must do this in the main program:

add_hrs_func("quit_game",quit_game2,0);

and then in the script file you can type:

quit_game();

Here another one:

hrs_variable *test_function(hrs_variable *name)

{

 char *tmp=get_string(name);

 if(strcmp(tmp,"Nathan")==0)

 return make_int(1);

 if(strcmp(tmp,"Fathur")==0)

 return make_int(1);

 if(strcmp(tmp,"Bram")==0)

 return make_int(1);

 return make_int(0);

}

Then add it to the script engine like so:

add_hrs_func("is_author",test_function,1);

Then the script uses it like this:

if(is_author(character_was_renamed_to_this_string$)==1) {

 // Display secret message to player.

}

2. Dialog/Menu Engine details

Here is a list of functions that both the game code and HRScript can use to control the dialog engine:

void destroy_dialog_object(int object_number);

	destroys object with the id number object_number and any child objects it holds.

	(if object_number is -1 this function will destroy all known objects)

int create_frame(int parent,int x,int y,int w,int h);

	parent is the number of the object this frame is inside (-1 is the number of the screen)

	x,y is where this object is put (where 0,0 is the top left corner of the parent)

	w is width and h height

	returns the object number

int create_picture(int parent,int x,int y,char *filename,int override);

	filename can be either a picture file on the disk

	or if '#pict_name' is used the engine will search for the picture in the 'portaits.dat' datafile.

	override should be 0 in most cases... however should override be 1 the picture will overlap any frame border that it would normal be inside.

int create_select(int parent,int x,int y,int top_y,int bottom_y);

	top_y is the top of the selection range compared to y (eg y+top_y)

	bottom_y is the bottom of the selection range compared to y (eg y+bottom_y)

int create_select_list(int parent,int x,int y,int dx,int dy,int number,int top_y,int bottom_y);

	creates a list of selects the length of number (could be used to make a menu)

	dx,dy is the where each next select is placed compared to the one before it

	all the select numbers should be in the range from ret to ret+number (where ret is the return value of this function

int create_select_grid(int parent,int x,int y,int dx,int dy,int x_number,int y_number,int top_y,int bottom_y);

	creates a grid of selects sized x_number by y_number (a letter picking dialog?)

	dx,dy is the amount of space between each select

	returns the select at (0,0) in the grid

	all the select number should be in the range from ret to ret+x_number*y_number (where ret is the return value of this function

	To get a grid location do this:

	sel=get_active_select();

	grid_x=sel%x_number;

	grid_y=sel/x_number;

int create_text(int parent,int x,int y, int w, int v, char *text,int more);

	w is width

	v must either -1 or 0 where -1 means display all the text now, and 0 means scroll the text character by character.

	text is the text to display

	Here are some control characters:

		^^ display the char '^'

		^n go to a new line

		^r change text to red

		^g change text to green

		^b blue

		^y yellow

		^w white

		^G grey

		^s slow down the speed of the scrolling

		^m set the scrolling speed back to the default value

		^f make the text scrolling speed faster.

	more (more text to follow?): 1 to display a blink down arrow after all text is displayed 0 don't display it.

	To Do: I have the lines character wrapping... but word wraping would be nice.

int create_slider(int parent,int x,int y,int w,int min,int max,int p,int c1,int c2);

	w is width

	min is the small value the slider can be set to

	max is the largest value the slider can be set to

	p is the slider type:

		0 is the default slider (a bar with a knob on it)

		1 is a progress bar

	c1,c2 are for color of the progress bar.

int get_fonts();

	returns the total number of fonts.

void set_font(int font_number);

	the fonts are loaded from the 'fonts.dat'

	-1 is the default allegro font.

int font_height();

	returns the height of the current font.

int font_length(char *text);

	return the length in pixels of text

int get_frames();

	returns the total number of different frame borders

void set_frame(int frame_num);

	sets which frame border to use.

void move_object(int obj_number,int x,int y,int speed);

	moves a object to x,y

	speed is how fast to move it. (-1 to move it instantly)

void resize_object(int obj_number,int w,int h,int speed);

	moves a object to x,y

int get_object_width(int obj_number);

	returns the width of a object

int get_object_height(int obj_number);

	return the height of a object

void open_frame(int frame_number,int speed);

	opens a frame (note: all frames are create closed)

void close_frame(int frame_number,int speed);

	closes a frame (note: all frames are create closed)

void change_text(int text_number,int v,char *text,int more);

	changes the text of a object (note you should wait for the text to scroll before doing this)

void stop_text_scroll(int text_number);

	this finishes a text scroll quickly.

int is_text_scrolling(int text_number);

	returns 1 if the text is currently scrolling 0 if not

void wait_for_text_scroll(int text_number);

	updates the screen and waits either for the user to push the action or cancel key or for the text to finish scrolling. (-1 doesn't work here)

void wait_for_animation(int object);

	updates the screen and wait for all animation in object to stop.

	(-1 to wait and check all objects)

void change_picture(int pict_number,char *filename);

	changes a picture

void set_active_select(int select_number);

	sets the active select

void clear_active_select();

	stops using any select.

int get_active_select();

	returns the active select

void select_blink_on(int select_number);

	makes this select blink on and off

void select_blink_off(int select_number);

	stops this select from blinking

int get_select_blink(int select_number);

	returns 1 if the select is blinking 0 if not.

int left_select(int select_number);

	returns the select left of select_number. (-1 for no select left of this)

int right_select(int select_number);

int up_select(int select_number);

int down_select(int select_number);

void set_left_select(int select_number,int select_number2);

	sets the select left of select_number to be select_number2

void set_right_select(int select_number,int select_number2);

void set_up_select(int select_number,int select_number2);

void set_down_select(int select_number,int select_number2);

int get_input();

	waits for a key then return one of the following values:

	-1 error

		0 up key

		1 down key

		2 left key

		3 right key

		4 action key

		5 cancel key

		6 menu key

		7 select key

int get_slider_value(int slider_number);

	gets the current value of a slider

void set_slider_value(int slider_number,int value,int speed);

	sets the current value of a slider

	speed affects how fast the animation goes (-1 for instant)

void change_slider_color(int slider_number,int c1,int c2);

	Changes the color of a progress bar.

int dialog_fit(int x,int y,char *name,char *text,int speed,int position);

	Creates a new dialog window at (x,y) with name as the characters name. speed is the speed the dialog opens and position if > -1 is the character the text is over. If position is used x,y become relative to the x,y of the character.

Note that you should be careful when mixing different dialog animation types in a single object as all the animation in a single object must go at the same speed. (eg. you can't move a frame at a speed of 5 and resize it at the same time at a speed of 3. The speed of both animations will be set to the last function that is called.)

3. NPC/character engine details

Instead of have one engine for the characters and one for the NPCs, we just have a single character engine. This will make it easier to control NPCs and the characters in a script if there is one set of functions for both NPCs and characters and enemies too!

Each character has four script to control it:

Init Script: This is called as the character is created (normally just after a new map loads, but it could be later...) The init script sets up all the proprities of the character being created.

Action Script: This is called when the player tries do an action on the character. The most common example of this is with the player speaks to an npc.

Player Script: This is called when the player get close to the character.

Logic Script: This is called each logic update.

New Npc controls:

set_npc_flag("FLAG",value); note that in this case value should be 0 for false and 1 for true

set_npc_var("variable_name",value); and in this case value can be any number.

Here is the list of FLAGs:

CHAR_SHADOW	draw the shadow?

CHAR_VISIBLE		is the character/npc visible?

CHAR_RANDOM	is the character/npc randomly walking around?

CHAR_FOLLOW		is the character/npc following the path?

CHAR_ISPLAYER	this character/npc is the player character!!!!

Here is the list of Variables:

layer			the layer this character/npc is walking on

follow			-1 for loop 0 for stop n for how many more points to walk around before stopping

dest_point		the current point the character/npc is walking to (-1 for none)

ax1			These are edges of the box a random character/npc will stay inside.

ay1

ax2

ay2

x,y,z			These are the location of a npc

All npc scripts can access the number of npc they belong to with the global varaible my_key for example:

number = get_global("my_key");

Here are some other useful npc functions:

void walk_to(int npc_number, int dest_point, int follow)

This makes a npc walk to the dest_point as numbered, you can find the dest_point in the map editor. follow is how far along the path to go before the npc stops. –1 for until the end.. or forever

void stop_npc(int npc_number)

make the npc stop whatever they are doing! (

void wander_around(int npc_number,int trigger_number)

this takes the hassle out of wandering npcs.. you just pick a trigger box and let them wander around inside of that ;)

int freeze_mobs(int state);

where state can be 0 – default, enabled npcs can move, disabled npcs are frozen; 1 - everything is frozen, 2 – everything can move even disabled npcs, 3 - like 0 but the players controls are frozen.

4. The tile map editing…

void set_tile(int layer,int x, int y, int number);

sets and changes a tile for a short time :) Notice! this change is not saved so you will have to redo it after a map loads if you want the change to remain when the player returns to a map.

void set_tile2(int entry_point, int number);

This does the same as the above.. however you can use an entry point to your advange, makes things easier :)

5. Map Editor Manual

You can choose the tiles from the menu on the right (if there are more tiles than there is space you can scroll nicely with the little black boxes, place some arrows or something in those boxes.)

In the bigger black box on the bottom there's room for two tiles (one for each mouse-button) you can select tiles with the right and left button of the mouse and then you can see in this black box which one you selected for each mouse button.

Then in the center there is space for the layers (the map) You can see that when pressing the arrows you can scroll the whole map. The background of the map is a little more red so you can see what the beginning of the map is...

(the map has no end, so don't try to scroll to the end!!!! :)

There's also some info on the left-top corner but that will be replaced

with menus. (maybe not)

Push the third mouse button or both left and right mouse buttons to get the main menu...

General keys:

F8 - Switch to Edit NPC mode

F9 - Switch to Edit Path point(s) mode

F10 - Switch to Edit Layer(s) mode (default)

F11 - Switch to Edit Trigger(s) mode

F12 - Switch to Edit Entry point(s) mode

Edit NPC keys:

F1 - Add new NPC

F2 - Edit NPC location

F3 - Delete NPC

F4 - Edit NPC options

F5 - Edit NPC Scripts

While Editing NPC Scripts:

0 - Edit current script type

1 - Test current script type

2 - Import current script type

3 - Export current script type

4 - Set current script type to Init script

5 - Set current script type to Action script

6 - Set current script type to Logic script

7 - Set current script type to Player script

Edit path keys:

F1 - Add point

F2 - Move point

F3 - Edit point options

F4 - Delete point

F5 - Create a Path of points (left click to add point, right when done)

Edit layer keys:

[- Go to prev layer

] - Go to new layer

F1 - insert layer

Layer - The layer number you want the new layer to be at

	 NOTE - 0 the bottom layer

Width - The new layer will be of a size (Width,Hieght)

Hieght -

F2 - delete layer

Enter the number of the layer and it will be deleted.

F3 - choose active layer

Enter the number of the layer that you want as the active layer.

This will be the layer where the tiles will be put on.

F4 - randomize layer

This will randomize the layer some basic terrain to put on it. Note function is risky and will for no reason sometimes crash. The 'k' key is meant stop this function if it dies, but I suggest you save the map before trying it.

F5 - Edit layer options

This will only work if you have a valid active layer.

Edit Trigger keys:

F1: add a Trigger

F2: edit a Trigger's size

F3: edit a Trigger's options

F4: delete a Trigger

Edit Entry keys:

F1: add or move an Entry point

F2: edit an Entry point's options

F3: delete an Entry point

Other keys:

Ctrl+S - save a map to the disk

Will save all the layers and other information about the map to the disk

Ctrl+L - load a map from the disk

Will load a map up from the disk, note this delete any current progress so be sure to save first.

O - Edit map options

Change the map options (most of the stuff here is for future use)

T - Switch Tileset

Use this to pick the tileset you want to use.. note this must be used before you start making the map (if you try a switch a tileset on a map

that already uses tiles bad things will happen...)

Print Screen - Save Screenshot

Saves a shot of the screen to the disk.

shift - the grid from the active layer (if it's beneath other layers) will pop up so you can see how big it is and what size (relaese shift and it will be gone)

Z - all the tiles in the active layers will be drawn on top

(release Z and it will be gone)

ctrl+arrows - move the current layer around

ctrl+alt+arrows - move the current layer one pixel at a time

alt+arrows move - the current layer one tile at a time

G - hold down to hide grid

N – show the tile numbering

ctrl+click (left or right) - remove tile

alt+click (left or right) - edit a tile's options

				 (including animation options)

space bar - pause tile animation :)

6. Music engine details

Here are a list of functions for either the script engine or the main game.

void music_set(char *name,int loop);

Set the current song to work with. All the songs should be in music.dat

loop sets if the song should loop or not.

void music_play();

Starts playing this song.

void music_stop();

Stops the song.

void music_pause();

Pause this song at its current place.

void music_unpause();

Continues a paused song.

int music_get_vol();

Get the volume of the music in this game.

void music_set_vol(int vol);

Sets the volume for the music in this game.

Note: You can play more than one song at the same time, as music_play() doesn't stop any existing songs that are playing. So normally you should pause or stop the current song before playing a new one.

7. Misc bits and pieces

the engine runs config.hrs before the graphic mode is set…. you can set the res & color depth here.

then start.hrs is run right before the main game loop begins

menu.hrs will be run if the menu key is pressed (Enter).. if it is empty nothing will happen.

battle.hrs is currently run randomly (in npc.cpp)…. for something more advanced a little coding might be needed

end.hrs is run when you quite

here are some stuff for save games

void start_save(char *filename);

startings saving

void save_variable(char *global_var_name);

saves this variable to the disk

void end_save();

stops saving

void load_game(char *filename); reads all the variables out of a file.

